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ELASTIC WAVE PROPAGATION IN TWO-COMPONENT MEDIA™

R.I. MOKRIK and YU.A. PYR'EV

The problem of pressure and stress perturbation propagation after the
application of a sudden load to the boundary of an elastic porous half-space
saturated by a viscous fluid or gas is investigated. The solution is
represented in the form of integrals over segments connecting singularities
of the Fourier transform in time for the solution of the problem.

Solutions of non-stationary problems within the framework of the model of a two~component
porous medium saturated by a viscous fluid /1—4/ are ordinarily constructed with certain
constraints on the values of the parameters of the multicomponent medium. For instance, these
are the softness of the porous medium (weakly-cemented mountain rock) /3/, the smallness of the
coefficient characterizing the dissipative properties of the medium (slightly viscous saturat-~
ing fluid) /5/, etc.

The problem of longitudinal wave propagation in a porous medium saturated by a viscous
fluid or gas is investigated below for arbitrary values of the parameters of this system and
a complete analytic solution is constructed that is suitable for any value of the time the
process takes.

1. We consider the problem of pressure and stress perturbation propagation after a sudden
application of a load to the boundary of an elastic half-space saturated with a viscous fluid,
or (as is equivalent in a mathematical sense), to the bottom hole of a drainage gallery strip-~
ping strata with absolutely rigid roofs and basements /3/. The system of equations describing
such motion has the form /1-—4/
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Here f is the porosity, dJudt, ér.ét are the rates of displacement of the skeleton and
the fluid, p;9, ps¢ are the solid phase and fluid densities, P, is a coefficient characterizing

the dissipative properties of the medium (B, = %0, 1 is the viscosity, and § is the permeability),
B, 1is the coefficient of dynamic coupling between the skeleton and the fluid (it was
assumed that B, =0 in /1, 3/), to be specific we consider f, = (p, — p,)107% P. ¢. R are

the moduli of the porous medium /4/ for whose calculation the porosity j, the solid phase (.
fluid Cy,, and skeleton C(, compressibilities, and the skeleton shear modulus p, must be given.

The normal stress ¢ in the solid phase and the pressure p within the fluid have the form
/4/

o=PZ +0%, —p=0Z
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The solution of system (l.1) is constructed in the domain z >0, —x <t < >~ for the
following two kinds of boundary conditions:

i

o, Nheo=0. pa) e =P H(), — o<t < x (1.3)
or

6 (2 t) lhmo = O, H (1), P2, 1) oo =0, —o0 <t <00 (1.4)

that describe the pressure rise in the gallery (liquid piston) or the load application from a
highly-permeable piston, respectively, and under the casuality conditions /6, 7/

uict)=rv@En=0 1<0, z>0 (1.5)
H (1) =0 whent <0, H({) = lwhent>0.

2. We use the complex Fourier integral transform in time with the transformation parameter
® to solve the problems (1.1), (1.3), (1.5) and (1.1), (1.4), (1.5). Then the stress field
and pressure can be represented by three functions G, (t. 1,0), G, (&, 1. 1), G, (¢, 7,0) in the dimen-
sionless coordinate ! and the dimensionless time 7t
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h is a characteristic lineay dimension which can, for instance, be selected in the Iform h ==
cpoByt for Py 0.

The functions G; (8. 1. %) j = 1.2; n = 0.1) can be represented as follows in the form of
integrals over segments connecting the branch points ¥ = %y, X =0, ¥ = —idc™ of the functions
v (). y. () whose analytic properties are studied in /8, 9/:

G, oo =HO)~H )1 t.n)— (2.4)
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As is seen, 0,. 8, ave variable limits of integration that depend on the parameters of
the porous medium, where &° is an arbitrarily small quantity.

The near-front asymptotic forms for T = fc_ and the jumps for t = {'c_ have the following
form for the functions G, (&, T, n)

60, Zg°\<6°
b= {

Gt t,n)=(— 1) ()" H (t)exp(—En). 1.—0 (2.5)
G, (5, 1, m)], = (x)"exp (=), 1. - 0; j = 1.2
(T‘i = 018 (bo - X'_\o:ks] "l) .

Their behaviour as 71—+ x can be obtained from the representations of the functions
G; (¢, 1,n) in the form (2.3), (2.4):
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Note that as the coefficient ¢,. characterizing the dissipative properties of the medium,
tends to zero, the relationships (2.1), (2.2) can be reduced to the form

PPw = (§o0 — Go) H, (1) + H (1.,)1 0Py = —¥16H, (1) 2.
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3. The solutions (2.1) and (2.2) yield the following pattern of the process from the
representation of the functions G;(i.T.n) in the form (2.4) and their behaviour in the
neighbourhoods of the characteristic points t=¢%¢c ., 1=%tc, and 11— .

After a sudden application of the pressure on the boundary of the half-space (f=0) at
a point at a distance §, a pressure wave pp, appears in the fluid and a stress wave 0Py
in the skeleton after a time interval 1 =} with jumps, respectively, of magnitudes

[P'Pe).=(¢20 —qro)exp(—En.), [o/p,).=—1pexp(—En.). (3.1)
At the time 7T = !¢, the pressure and stress also experience jumps, respectively, by amounts
[P’Pa)e=(420 = qro)exp(— &}, [0/pyle=1r0exp(—EN.). (3.2)

With time the pressure in the fluid rises to the value of the applied pressure on the
half-space boundary while the stress tends to zero as T — no:

Ppy =1 — &)k (kkyn)™s B’ 3.3)
0'py = —e, Yhy (kk,n)*h Bt |



242

- »
1% i ok g g i z
—_— } e . »
s /;?'Lr"_ 2[F
06— — i A 2
; as}-H71
04 . ’ ]
p 0.- F———
02 = ‘ 07 | S G -y S— —
i M
O oP :
Pl | 7 F
0 2 Lo 0 [ T
Fig.l Fig.2

For the second method of applying the load (1.4), the gualitative pattern of stress and
pressure perturbation through the point § is conserved. The stress and pressure jumps for
T=¢c., and 1= {c¢ are Getermined by formulas analogous to (3.1} and (3.2) (with the sub-
stitutions p.p,— 0'0,. 6/p, — P/Oy, €jo=> Gjo. Y10 — f10). As T=s 00 we have formulas analogous
to (3.3) (with the substitution p p,— 0.0,, G/p, — p/0,. ki — k).

The magnitudes of the jumps 7 =¢E¢c¢. and 7= t¢ diminish by a factor of e, respectively,
at the distances /_ = 1vw_. /. = 1y_. which are inversely proportional to ¢, (i.e., the viscosity),
and they are not substantial at large distances.

4, Computations were performed for certain models. The physical constants of quartz
sandstone, oil, gas, and water were taken from /10/.

Changes in the stresses o¢y,.c0, and the pressures pr, po, in a water-saturated (curve
1), ocil-saturated (curve 2}, and gas-saturated (curve 3} half-space are shown in Figs.1l and 2
as a function of the time 1 in a section at a distance Et=1 from the surface of application
cf the pressure p, and the stress o,: The quantities calculated by means of (2.1), (2.2), (2.4)
correspond to the sclid lines, and quantities calculated by means of (2.7) for the fluid
viscosity g = 0. by dashes. The dimensionless distances of the jump penetration are for
the gas-saturated /_=23-10%, I, = 2.4, oil-saturated I.=4.2.10°, I_= 16, and water saturated
1.=2381401, I =12 half-space.

The significant influence of the parameter ¢ on the stress and pressure distribution in
a porous medium follews from the results shown in Figs.l ang 2.
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